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The wavefunctions and various partitions of the energy are examined for a variety of small mole- 
cules (H2, H3, H4, Hell, Hell2, He2, LiH, and BH) in order to isolate the factors crucial for bond 
formation. We find that a natural partition of the energy leads to the conclusion that the crucial factor 
is the exchange, or nonclassical, part of the kinetic energy, T x. The change in T x upon pushing the 
atoms towards one another is the dominant term in the binding energy; it is negative when the resulting 
molecule is stable and positive when it is unstable. We show that T ~ is related to the interference kinetic 
energy considered by Ruedenberg. 

Die Wellenfunktionen und verschiedene Zerlegungen der Energie werden ftir eine Reihe kleiner 
Molekiile untersucht (H2, H3, H4, Hell, Hell2, H%, LiH und BH), um die Faktoren zu finden, die f~r 
die Bindungsbildung ausschlaggebend sind. Die natfirliche Zerlegung der Energie lgBt die Folgerung 
zu, dab der bestimmende Faktor der Austauschanteil T x (oder nichtklassische Anteil) der kinetischen 
Energie ist. Die ~nderung von T ~ beim Zusammenf/ihren der Atome ist der dominierende Term fiir 
die Bindungsenergie; er ist negativ, wenn das resultierende Molek/il stabil ist, und positiv, falls es 
instabil ist. Es wird gezeigt, dab T x im Zusammenhang zum Wechselwirkungsanteil der kinetischen 
Energie nach Ruedenberg steht. 

1. Introduction 

A number of molecules, such as Hz, BH, and HF are strongly bound, with 
binding energies on the order of several electron volts and bond distances of less 
than three bohr 1. This type of bond is often referred to as a chemical bond and is 
often viewed as involving sharing of electrons between the bonding atoms [1]. 
On the other hand many other systems, such as H% are only very weakly bound, 
with energies of less than 0.1 eV and bond distances of more than five bohr. This 
type of bond is often referred to as a van der Waal's bond is viewed as involving 
instantaneous correlation between the motions of the electrons of the two atoms 
[1]. The chemical forces dominate at short distances and the van der Waal's 
forces dominate at large distances. Compressing molecules such as He2 to distances 

* Partially supported by a grant (GP-15423) from the National Science Foundation. This 
paper is based on a portion of the PhD thesis (California Institute of Technology, 1970) by CWW. 

** National Science Foundation Predoctoral Trainee. Present address: Department of 
Chemistry, Argonne National Laboratory, Argonne, Illinois 60439, U.S.A. 

*** Alfred P. Sloan Foundation Research Fellow. 
"~ Contribution No. 3917. 

1 Atomic units are used throughout; in these units e = h = m~ = 1, 1 hartree = 27.211 eV = 627.51 
kcal mole- 1 is the unit of energy, and 1 bohr = 0.52917 A is the unit of length. (Cohen, E.R., Du Mond, 
J.W.M.: Rev. rood. Physics 37, 537 (1965).) 
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characteristic of chemical binding generally leads to large repulsive or antibonding 
forces; that is, the chemical forces are antibonding but short range and the 
van der Waal's forces are bonding but long range. Thus the binding energy and 
equilibrium geometry involve a balance between those two effects. On the other 
hand for molecules such as BH, both forces are attractive and the stronger chemical 
forces determine the equilibrium geometry. This distinction between chemical 
and van der Waars forces is especially meaningful since we can actually construct 
wave functions which include the first but not the second effect (see below). 

In this paper our objective is to study the chemical forces and determine why 
they lead to bonding in some systems (e. g., H2) and antibonding in others (e. g., 
He2). We will start from rigorous self-consistent field wave functions and attempt 
to effect a partition of the energy in such a way that the parts responsible for chemi- 
cal bonding are separated out from the other terms. The resulting partition leads 
to the conclusion that the dominant term for bonding is the change in the exchange 
or nonclassical part (T x) of the kinetic energy (T). This term is negative for systems 
such as H2 and LiH and positive for systems such as He2 and H3, and the sign 
of this term can be predicted from general considerations of the states of the 
separated molecules. 

The conclusion that it is a decrease in the kinetic energy which is responsible 
for chemical bonding is in agreement with the earlier ideas of Hellmann [2] and 
Ruedenberg [3]. In addition the general philosophy of our approach is very much 
the same as Ruedenberg's and some of our concepts are similar to his. However 
the details of our approach are distinctly different and the final definition of the 
nonclassical part of T is not at all the same, as will be discussed later. 

Although the total energy and its partitions are very important to us here, we 
wish to extract other information out of the wave function. In particular we want 
to be able to make a quantitative comparison of, say, the orbitals of the H2 molecule 
and the H2 part of H2H, in order to determine just why H2H is not stable and why 
the energy is lower for linear H2H than for the bent case. Unfortunately, it is not 
possible, in general, to discuss the exact wave functions in terms of orbitals in such 
a way. However there is a class of very accurate wave functions which does allow 
a somewhat rigorous discussion of the many-electron wave function in terms of 
orbitals. Since use will be made of such wave functions, we summarize next some of 
their important features. 

2. Independent Particle Wave Functions 

In some approximations the wave function, T, of a system of N identical 
particles may be discussed in terms of a set of N one-particle functions, called 
orbitals, each of which may be interpreted as the eigenstate of an individual 
particle moving in the average field due to the other N - 1 particles. In this section, 
we will discuss several approximations which lead to such interpretations. 

In the Hartree method the N-electron wave function, T H, is taken as a simple 
product of orbitals and spin functions, 

~R__ ~RZ, (1) 
where 

2 . . . . .  N ) =  (2) 
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and X is a suitable product of one-electron spin functions. In this case the total 
energy is given by N N 

E H = ~ (q~,lhlq~,) + ~ Jij, (3) 
i i > j  

where h = - �89  V2+ v n, v N is the nuclear attraction operator, and Jij is the usual 
Coulomb integral 

Jij =/q~i~bj r l ~  q~igbj). (4) 

The orbitals in (2) should be optimized so as to minimize the total energy (3). The 
resulting equations for the optimum orbitals can be written 

H~q~ k = ek~ k , k = 1 ..... N (5) 
where 

H H Hk = h + Uk , (6) 

N 
H 

Uk-~ 2 JJ'  (7) 
j4 :k  

and Jj  is the Coulomb operator 

(In (8) the integration is over the coordinates of electron 2.) 
Unfortunately the wavefunction of (1) is in general not appropriate for Fer- 

mions (or Bosons) since it is not an eigenfunction of the transposition operators. 
Note that the spin function ~ in (1) could be taken as an eigenfunction ofS 2 (rather 
than a simple product) and the Eqs. (3)-(8) would still apply. Thus the primary fault 
of the Hartree wavefunction is that it violates the Pauli Principle, not that it has 
the wrong spin symmetry. 

For (1) the probability distribution (i. e., electron density) is 
N 

~n(1) = ~ [q~,(1)l 2 (9) 
i 

and the total energy (3) and potential (7) are just those expected classically from 
such a charge distribution (omitting self-repulsion terms). 

In the Hartree-Fock method the wave function is taken as a Slater determinant 

~/)HF = ~ ( ~ H F z )  ' ( 10 )  

where zr is the N-particle antisymmetrizer and ~nV and Z are products of one- 
electron spatial and spin functions, respectively. In this case the energy expression 
is the same as (3) except for additional terms, called exchange integrals, which 
result from the permutation of orbitals of the same spin in (10). The orbitals in 
q~HF are required to be optimized (so as to make the total energy stationary), 
resulting in the following equations 

Hr~F (ok = ek~k, k = 1 . . . . .  N (11) 
where 

H F  = h + 02) 
and U HF is the same as U~ except for the presence of exchange terms. However, 
the electron density still has the form of (9) and all one-electron spatial properties 
14" 
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can be expressed in the same form as in the Hartree case, 
N 

i 

where f is a one-electron spatial operator, and F is the corresponding many- 
electron operator. The wave function (10) satisfies the Pauli principle for any ~b nv 
but is not necessarily an eigenfunetion o f  ~z. In order to obtain the correet spin 
symmetry, we generally force the orbitals to be doubly occupied (once with each 
spin). However this double-occupation restriction then leads to difficulties due to 
improper dissociation of the wave function 2. We can obtain the correct dissocia- 
tion by dropping the double occupation restriction (to obtain the unrestricted 
Hartree-Fock (UHF) wave function); however the resulting wave function does 
not have the correct spin symmetry. 

This leads us to consider the wave functions [4] 

~p~l = G](~Gt Z) (13) 

analogous to (10) but in which the group operator, G], takes care of both the Pauli 
and spin symmetry [5] so that (13) satisfies Pauli's Principle and is an eigen- 
function of ~2 for all spatial functions ~G1. We restrict ~ 1  and Z to be products 
of spatial and spin functions, respectively, but require that the orbitals be optimized 
(with respect to the total energy). The resulting variational equations have the 
form 

H f  1 q~f' = ek4f ~ , k = 1,...,N (14) 

where the one-particle operator H~ 1 has the form 

H f  1 = h + Uf ~ (15a) 

with the effective potential U~ ~ similar to U n except for the occurrence of many 
exchange terms (involving both h and 1/ru). Here Uf 1 can be expressed as 

U~ z = UC'+ V~, (15b) 

where U c* is given by (7) and is just the average classical electrostatic potential 
and U~ contains all of the exchange terms (arising from the Pauli principle and spin 
symmetry requirements). Similarly, the total energy may be expressed as 

E G1 = E cl + E ~' , (16) 

where E ct is the energy we would obtain if the wave function were a simple product 
of orbitals, as given in (3). Note that E x involves exchange contributions not only 
from the electron-electron interactions but also from the one-electron terms, i. e., 
kinetic energy and nuclear attraction. The orbitals in ~oa cannot be taken as 
orthogonal and thus the one-electron properties are given by a 

N 

<F> = ~ (~b i[ f [q~j> Dis ,  
~j 

2 By improper dissociation we mean those cases in which the energy of the molecular system with 
R = oo is higher than the sum of the atomic energies (using the same method of calculation), e.g., this 
is true for H 2. For further discussion, see Ref. [4]. 

3 The normalization constant  is included in the Du's. For a further discussion of these orbital 
density matrices see Ref. [4] (where they are denoted as D~). 
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where Di~, the orbital density matrix, is no longer the unit matrix (Dij = 6 0 as it 
was in the Hartree and H F  cases [4]. Here we can write the value for a one-electron 
property as 

<F)  = F c~ + f ~ , (17a) 
where 

N 

FCl= ~ ( i l f [ i )  (17b) 
i = 1  

is the classical part  (arising from an orbital product  wave function) and 4 
N 

F~= ~ D u [ 2 ( i l f l j ) - ( i l , ] ) ( < i ] f ] i ) + ( j [ f [ j ) ) ]  (17c) 
i > j = l  

is the quantum mechanical or exchange part of the property. Thus the electron 
density is no longer given by (9) but becomes 

0~1~ ---- ~ D,jr Cj(1), 

which can be written as 

O G 1  Acl x (18)  (1) = ~'(i) -}- ~(i) �9 

In this case 
S d3 xl  0c'(1) = N 

d3x10x(1) = 0, 

so that 0 x might be described as an interference density (a somewhat related term, 
0 r, has been defined by Ruedenberg [3] in terms of an expansion of the density 
in terms of atomic basis functions). 

3. Analysis of Energies of the Wave Functions 

Next we consider the G 1 wave functions for several molecules and examine 
various partitions of the classical and nonclassical energies and the variation of 
these energies with internuclear distance, R. We consider the starting point as 
systems A and B infinitely far apart, with the wave functions as opt imum for the 
separated A and B systems (note here that A and B may be atoms or molecules). 
Then we will consider A and B at a distance R = R l a r g e ,  such that chemical forces 
may already be operating, but for which the wave function is still well approximated 
by the product  of the wave functions of the separated systems A and B. At R~,g~ 
we will consider wave functions in which the orbitals are forced to be those 
appropriate  for R = oo (but displaced to the new nuclear positions), and we will 
also consider the wave functions with the orbitals reoptimized for R = Rla~g e. 
These two types of wave functions will be referred to as the frozen and SCF wave- 
functions, respectively. Note  here that at all finite R we take the many-electron 
wave function to be the G1 wave function s; that is, even at large R, we correctly 

Here, for convenience, we assume the orbitals are real. 
5 For the molecules with three or more electrons, we should optimize the spin coupling to obtain 

the spin-coupling optimized GI or SOGI wave function. (Ladner, R.C., Goddard III, W.A.: J. chem. 
Physics 51, 1073 (1969).) However for these systems and the larger distances considered here, the dif- 
ferences between G1 and SOGI are negligible for our present analysis�9 
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inelude the exchange of electrons of A with those on B. In some cases we will 
examine the energies over a large range of R, but our primary concern is to establish 
how the various types of energy change from R = oo to R = Rlarg ~ and especially 
which energy changes are different for bonding systems such as H2 as compared 
to nonbonding systems such as He z. 

First we will consider the H2 molecule for various internuclear distances from 
R = R  e to  R =  oo. 

A. 7he H 2 Molecule 

One typical partition of the energy is to separate it into the kinetic energy, T, 
and the total potential energy V, 

E = T + V .  

However as shown 6 in Fig. 1 for H 2, neither T nor V is monotonic as R decreases 
from R = oo to R = R e. Since the binding energy is monotonic in this region, it is 
clear that the T, V partition does not effect a partition of the bonding effects from 
those unrelated to bonding. One might also consider partitioning Vinto electron- 
electron repulsion (Ve"), electron-nuclear attraction (Ve"), and nuclear-nuclear 
repulsion (V "") parts. These qunatities are monotonic but vary far more rapidly 
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Fig. 1. The total binding energy (E), kinetic energy (T) and potential energy (V) for H2 molecule (ob- 
tained for GI wavefunctions, see Footnote 6). The potential energy has also been partitioned into the 
electron-electron (V~~ electron-nuclear (V~"), and nuclear-nuclear (V n") parts. All quantities have been 

referenced with respect to the value for R = oo 

The GI wavefunctions discussed here are all for optimized minimum basis set wavefunctions. 
In Appendix A we consider the effect of the basis set upon the partitions considered here and find it to 
be minimal. 
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Fig. 2. The classical (E c~) and exchange (E ~) parts of the total energy of H 2. The broken lines indicate 
the quantities obtained from the frozen wavefunctions 

with R than does E or V (see Fig. 1). That is, there are various parts of these 
quantities that cancel each other out. 

An alternative partition of E into the classical and exchange parts (16), leads 
to quantities which vary monotonically with R (see Fig. 2) [6]. In this case E ~ is 
larger than E cg, accounting for about two-thirds of the binding at R e. However it 
would appear that some binding effects are contained in both E cz and E x. 

We considered partitioning E x into its kinetic energy (TX), nuclear-electron 
attraction (V"X), and electron-electron repulsion (V ex) parts 

EX= T~+  V"~+ Ve~ 

and found that E x is dominated by T x, with the other contributions both repulsive 
[6]. In addition, T ~ follows the binding energy rather well suggesting a partition 
of the energy into T * plus everything else (co), 

E =  T*+co .  (19) 

In Fig. 3 we see that T ~ and the total energy behave similarly and that the change 
in co is relatively small and smooth. 

Below we will examine partitions (16) and (19) for a number of other molecules, 
both stable and unstable ones, to test the generality of the above results. First, 
however, there is an additional point to consider concerning the above partitions. 
All energies were calculated for the optimum orbitals at the specific R being 
considered 6. However at large enough distances the self-consistent orbitals should 
be essentially the same as the orbitals for R = 09. If our partitions are meaningful, 
they should not be overly sensitive to whether the frozen or SCF orbitals are 
used. The E c* and E x for the frozen orbitals of H2 are also shown in Fig. 2 where 
we see that E xF ~ E ~ for R > 2.5 %, whereas for R > 3a0 we had A E  cl'F ~ �89 c~ 



202 

.05 

.00 

-.05 
_c  

)- 

lad 
z 
W 

-.10 

-.L5 

C. W. Wilson, Jr., and W. A. Goddard III: 

I - I . . . .  

0. I. 2. 3. 4. 5. 6. 7. 8. 

R (bohr) 

Fig. 3. The energy E and exchange kinetic energy T ~ for H2. The broken lines indicate the quantities 
obtained from the frozen wavefunctions. For the SCF case ~o = E - T x is also shown 

(where A E is the difference between the value at R and the value at R = oe). Thus 
it is the classical energy which seems primarily affected by self-consistency. In 
addition, the T ~ for the frozen case is shown in Fig. 3, where we find that T ~F ,,~ T x. 
Thus not only does T ~ seem to include the terms responsible for bond formation 
but it is not very sensitive to the optimization of the orbitals 7. 

B. Other Systems 

In order to test the generality of the results for H E, we considered a number  
of small systems of varying degrees of stability and instability. For  each one we 
have considered two distances, R = ~ and R--R~arge, where Rlarg e is chosen so 
that the chemical forces would be small but significant. The basis sets and other 
details of these calculations are given in Appendix A. For  each system we have 
considered both the frozen and SCF orbitals a t  Rlarg e and calculated E ~ E x, T x, 
and e). In Table 1, we show how these change from R = oe to R = R l a r g  e (here A T ~ 
denotes the change in T ~, etc.). 

7 The Weinbaum wave function (Weinbaum, S.: J. chem. Physics 1, 593 (1933)) is equivalent to the 
minimum basis set G1 wave function for H2, and the Heitler-London wave function (Heitler, W., 
London, F.: Z. Physik 44, 455 (1927)) is equivalent to the frozen G1 wave function for H z. 
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Table 1. Partitions of the G1 energy for several systems. The energies are in Hartree atomic units". 
Here A refers to the value at finite R minus the value at R = oo 

System Self-consistent orbitals b Frozen orbitals c 

A E  ctd A E  ~,d AT~,r Aco e A E  czFa A E  xFa A T  ~ w  Aco Fe 

H2 f -0.00188 -0.00766 -0.03598 0.02644 -0.00118 -0.00729 -0.02851 0.02005 
Hell  g -0.00004 0.00103 0.00451 -0.00353 -0.00031 0.00142 0.00649 -0.00637 
HzH h 0.00023 0.00126 0.00730 -0.00581 -0.00060 0.00229 0.00974 -0.00805 
H2 Hi 0.00002 0.00147 0.00806 - 0.00657 - 0.00062 0.00244 0.01034 - 0.00852 
He2 j 0.00009 0.00005 0.00063 --0.00050 --0.00005 0.00020 0.00122 --0.00107 
Hell2 k 0.00072 -0.00031 0.00062 -0.00021 -0.00013 0.00059 0.00312 -0.00266 
(H2)21 0.00071 0.00017 0.00300 -0.00212 -0.00029 0.00130 0.00580 -0.00479 
LiH m 0.00188 -0.01195 -0.02877 0.01870 -0.00132 -0.00706 -0.02107 0.01269 
BH j -0.00633 -0.01073 -0.04220 0.02514 0.01221 -0.02456 -0.03248 0.02013 

" See Footnote 1. 
b By self-consistent orbitals we mean that the optimum G1 orbitals are used. 

By frozen orbitats we mean that the orbitals are optimum for R = o% but that the wavefunction is a 
Gl-like wavefunction for the finite R. 

d Ec~ and E x are the classical and exchange parts of the energy, E = E c~ + E ~. 

T ~ is the exchange part of the kinetic energy and co contains the remaining parts of the energy, 
c o = E -  T ~. 

f R = 4 . 2 a  o. 
g R =4.643ao. 
h R12 = 1.4304242 ao, R23 = 4.285 ao, linear. 
i R12 = 1.4304242 ao, R23 = 4.285 ao, 0 = 30 ~ 
J R = 5 . 0 a  o. 
k R1 z = 4.643 ao, R23 = 1.4304242 ao, linear. 
i R1 z = Ra 4 = 1.4304242 ao, R23 = 4.285 ao, linear. 
mR = 6 . 0 a  o. 

For  the frozen orbitals we find (see Table 1) that T x decreases with R for the 
bound systems H2, LiH, and BH and increases for the unbound systems. The 
remaining energy term, 09, behaves in the opposite direction; however T x domina- 
tes in every case. Upon adjusting the orbitals self-consistently, we find that A T x 

is still negative for bound systems and positive for unbound systems, and all cases 
A T x still dominates A o). Thus it would seem that the terms responsible for binding 
or antibinding are isolated into T x for all of these systems. 

For  each of these systems we have also listed in Table 1 the A E ~ and A E c~ 

for the frozen and self-consistent cases. For  the frozen orbitals we find that E c~'F 

decreases with R in every case, except BH, whether the system is bound or unbound. 
Correspondingly E ~e decreases for the bound systems, increases for the unbound 
systems, and dominates A E c~. However when the orbitals are adjusted for self- 
consistency the above trends change. Here we find that except forHz and HeH, E cg 
increases as R decreases and that except for H 2, Hertz, LiH, and BH, A E ~ also 
increases. Thus it would appear that the terms responsible for binding are not well 
isolated by the {E ~, E cl} partition. 

From the calculations discussed above it appears that the factors responsible 
for the chemical bond are isolated into the exchange kinetic energy. 

Next we will consider the H + ion. Since H~- has only one electron, it would 
appear that TX= 0 at all R; yet H~ is more than half as stable as H 2 [7 3. 
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C. 7he H f  M o l e c u l e  

Consider first two H atoms separated by a large distance, R; let one be in the 
ls state, q~l~, and the other in the ns state, q~,~. There are two possible states of the 
system - the excitation could be on the left proton or on the right one. We will 
denote the wave functions for these states as 

~L(1, 2)= q~,Ls(1) ~b~(2) (20) 
and 

~R(1, 2) = ~b~s(1 ) q5~,(2) (21) 

respectively. Classically we could specify which atom is excited, and the wave 
function would be (20) or (21), but quantum mechanically the total wavefunction 
for the adiabatic states of the system must be the symmetric (or antisymmetric) 
combination of the above states, 

(~total = ~ L  .+. (~R. (22) 

In addition we have to take into account Pauli's Principle, and for a singlet state 
the spatial part of the total wave function becomes 

7 ~t~ = [e + (12)] (~b L + #R), (23) 

where e is the identity permutation and (12) interchanges particles 1 and 2. Thus 
in the total wave function we not only obtain exchange terms arising from the 
[e + (12)] operator (which we also found for the ground state), but in addition 
we get exchange terms [8] from the degeneracy of the states (20) and (21). 

Now consider the limit in which qS,~ is in the continuum, that is, the H~ mole- 
cule. In this case at large R we have 

~b L = qS~, (24) 

�9 = (25 )  

and the total wave function is 

7 jt~ = qS~s + qS~s. (26) 

Here the classical wave function is either (24) or (25) and the quantum mechanical 
wave function is (26). Thus here we do not find the type of exchange term due to 
[e + (12)], but we still have the other type of exchange term due to the degeneracy 
of the states (24) and (25). Thus for H I  we define E cz as 

where h is the total one-electron Hamiltonian. In this case we define the exchange 
energy as s E x = E - E cl , 

8 Feinberg, M. J., Ruedenberg, K., Mehler, E.L. (Advances quant. Chem. 5, 28 (1970)) have started 
with a quasi-classical density function 0 Qc and defined an interference density function ff~ as the re- 
mainder of the total density. Because of the symmetry of the system, the energies they associate with 
QQc are equivalent to our classical energies and their interference energies are exactly our exchange 
energies. Thus their conclusions on the H~ system are in agreement with our own. We thank Dr. 
Ruedenberg for a copy of this paper prior to publication. Feinberg and Ruedenberg (Feinberg, M. J.: 
Theoret. chim. Acta (Berl.) 19, 109 (1970); Feinberg, M.J., Ruedenberg, K.: J. chem. Physics 54, 1495 
(1971); 55, 5804 (1971)) have also found their analysis to be valid for other one-electron diatomics. 
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Fig. 4. Comparison of the total energy E and exchange kinetic energy T ~ for the frozen and exponent 
optimized wave function of H~-. (A minimum basis set was used) 

where the bar over E x indicates that the second kind of exchange is involved, and 
similarly for the exchange kinetic energy, Tx= T -  T c~. Fig. 4 shows T~ and E 
for H~- in the case where the orbitals are frozen (i. e., H atom orbitals). We see 
that E p is negative for all R and is dominated by T ~v. Thus again it seems that the 
exchange kinetic energy is the crucial term in forming the chemical bond. 

We also carried out self-consistent calculations as a function of R (these were 
minimum basis set calculations, thus only the orbital exponents were really free 
to vary). The resulting total energy is shown in Fig. 4, where we see that down to 
about 3 %, the results were only slightly lower than for the frozen orbitals. 

Given a q5 L or a CR it is simple to solve for ~total as ill (22); however there does 
not appear to be a nonarbitrary, unique way of solving for q5 L or q5 R when ~total is 
given 9. In the case of H~, #tota~ is a symmetric function and there are an infinite 
number of eL and r which add up to yield Ctot,l. For  this reason we have arbitrarily 
defined the SCF eL as just the part of ~total which uses basis functions centered 
on the left proton. This is consistent with eL for the frozen case and yields reason- 
able results as shown in Fig. 4. We see that just as in H 2, T ~ continues to drop as R 
decreases through R e (the equilibrium value). In any case T ~F and T ~ are nearly 
the same for R > 3%, and we still find that the exchange kinetic energy dominates. 

In general for degeneracies such as in H~-, a definition of the classical energy 
as the energy for a single one of the degenerate states leads to a reasonable and 

9 The total energy is invariant under transformations symmetrically mixing cR  and r of (26), 
and hence a subsidiary condition such as maximum localization of the orbitals would have to be 
applied. 
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satisfactory partition of the energy into classical and exchange parts. This applies 
not only to ions such as Li],  but also to excited states of molecules, which often 
lead to such additional degeneracies. Such cases will be deferred to a later paper. 

D. Summary 

In summary we see that the partition of the G1 energy into T x and co appears 
to isolate into T ~ the major effects characterizing chemical forces. 

4. Comparison with Other Analyses of Bonding 

In a lucid and erudite discussion of chemical binding Ruedenberg [3] sug- 
gested partitioning the pair density kernel into classical and exchange parts. He 
then proceeded to partition the kinetic, nuclear attraction, and electron repulsion 
energies into various types of quasi-classical, promotion, interference, and self- 
pairing terms. These partitions were based on an analysis of the wave function in 
terms of atomic-like basis functions and hence were independent of the type of 
wave function being considered (e. g., configuration interaction or Hartree-Fock). 
In this approach the classical density, ~c~, is defined in terms of the atomic basis 
functions (not the molecular orbitals) used in the expansion of the wave function, 
so that Qc~ has the form 

v, c~, 1 1'" ~cz(1, 1')= ?.,~At , ~, 
A 

where the summation is over atomic centers (A), ~cz involves only basis functions 
on center A and the trace of ~c~ is just the number of electrons. The remainder of 
6(1, 1') is defined as the interference density, ~I. The classical and interference parts 
of the kinetic energy are then defined in terms of these densities. Ruedenberg 
found [3, 9] that bound molecules exhibit a large negative interference kinetic 
energy, T I. 

Since Ruedenberg's ~c~ is defined in terms of the atomic basis functions and 
our ~cz [see (18)] is defined in terms of the G1 molecular orbitals, there clearly 
is no direct correspondence between them. For the Weinbaum wavefunction 
(equivalent to the minimum basis set G1 wave-function) of H2, Ruedenberg 
obtains TCt= 1.0+ T e =  1.423 and T~= -0.275, whereas we obtain TCt= 1.312 
and T x = -0.164 for the SCF G1 orbitals, and T cz'F = 1.0 and 7" = -0.156 for the 
frozen G1 orbitals (the calculated binding energy is 0.148). 

We should make it clear here that despite the differences between T x and T z, 
Ruedenberg was the first person to recognize and quantify the importance of the 
nonclassical kinetic energy to chemical binding, one of the more significant 
developments in the theory of chemical bonding since Pauling's classic papers 
[10]. Ruedenberg and co-workers performed analyses on the Hartree-Fock 
wavefunctions of several systems including H2 0  and several diatomics [9], and 
found the bond to be due largely to a large drop in the interference kinetic energy, 
T ~. This approach can be applied to any wavefunction involving basis functions, 
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including GI wavefunctions. As we saw above for H 2 the resulting T t is different 
from TX; however we have not applied Ruedenberg's approach to GI wave- 
functions for other molecules. Since the Ruedenberg partition is basis set depen- 
dent, it is not obvious how close the correspondence between T x and T I will be for 
larger basis sets and for systems with more electrons. For example, for a numerical 
wavefunction, the Ruedenberg partition is not well defined, but since T x is defined 
in terms of GI orbitals and not basis functions, there is no difficulty in obtaining T x. 

Hellmann [2] used a model of the atom and the molecule to study bond forma- 
tion and found that an initial drop in the kinetic energy was responsible for bonding. 
This model corresponds to a frozen calculation, and therefore, contrary to some 
arguments against his conclusions, need not satisfy the virial theorem [3]. (Only 
wave functions optimized with respect to a scaling need satisfy the virial theorem.) 
Pauling [10] and London [11] suggested that "resonance" was responsible for 
bonding. The "resonance" energy is, of course, quite similar to E x. Pauling also 
noticed the density contraction effect. 

The above studies of Ruedenberg, Hellmann, London, and Pauling examined 
how the molecule is formed. There is a second type of study [12] that examines 
only electron density from the final SCF wavefunction for the molecule. Since such 
treatments can treat only the final density contraction, these studies necessarily 
miss T ~. Thus if T ~ is the significant quantity important for binding, any attempt 
to analyze bonding in terms of electron density would be futile since the informa- 
tion needed to construct T ~ would be absent. (The first-order density matrix, 
however, can be used to construct T ~ and hence could be used in analyzing 
bonding.) 

Recently the charge density interpretation of binding has been extended by 
by Bader and Preston [13]. They partition the total kinetic energy density K(x)  as 

K(x) = L(x) + G(x), 

where L ( x ) =  -1V2 ~)(x) is the Laplacian of the density and G(x) is the remainder 
(involving gradients of r Although the integral of L(x)  is zero, 

L(x)  d x  = O, 

they note that a small negative curvature in ~(x) leads to small positive contribu- 
tions to L(x)  and thus (they suggest) a smaller local contribution to the kinetic 
energy than would otherwise be expected. They conclude that bound molecules 
are systems for which it is favorable to decrease the curvature in the bonding region. 
Of course, any change in the charge distribution would lead to A S L ( x ) d x  = 0 
and hence no net change in the contribution of L(x)  to the kinetic energy. 

The integral of G(x), is the total kinetic energy and includes both T c~ and T x. 
Thus for a stable molecule the integral of G(x) dominates the potential terms and 
aids bonding at large distances but opposes binding and is dominated by the 
potential terms at short distances. That is, this partition into kinetic and potential 
terms would seem to lead to bonding effects in either term depending on the distan- 
ce. As discussed in Section 3 the partition of the kinetic energy into T c~ and T x 
leads to the quantity T x which dominates the bonding in molecules such as H 2 
from R e to ~ .  
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5. Discussion 

Our whole discussion here has been based on GI-type wavefunctions which 
involve an orbital product modified by an operator which takes care of the neces- 
sary symmetries of the molecular system 1~ For such a wavefunction it is quite 
natural to partition the energy and other quantities into the classical part involving 
just the orbital product and the remainder involving orbital exchanges. The 
orbitals involved in such wavefunctions lead to a qualitative description of mole- 
cular systems similar to the valence bond description and compatable with com- 
mon intuitive ideas about such systems. Since other types of wavefunctions such 
as obtained from configuration interaction (CI) also lead to a proper description 
of bonding, we might wonder how our interpretation would apply to such wave- 
functions. The orbitals in a CI wavefunction do not generally correspond directly 
chemically interpretable quantities and so one problem will be to transform the 
wavefunction to obtain more interpretable orbitals. Since the GI and CI wave- 
functions both lead to very good descriptions of the total wavefunction, the overlap 
of these wavefunctions should be very large. Thus we might start with the CI wave- 
function and obtain from it a set of GI-like orbitals by maximizing the overlap [14] 

[ (~ctl  4~ci)12 
(~GI I I~GI )  ( ~ C I [ ~ C I )  " 

That is, we find a GI-like wavefunction with largest projection on the CI wave- 
function. Using these new GI-like orbitals, we can interpret the CI wavefunction 
just as if it were a GI wavefunction. Such an approach might also be used to obtain 
approximate GI-like orbitals from Hartree-Fock wavefunctions [15]. Thus 
although the GI orbitals form a natural framework for interpreting bonding, one 
can probably obtain similar orbitals from other types of wavefunctions without 
actually carrying out GI calculations. 

6. Summary 

We find from an analysis of various partitions of the total energy that the 
nonclassical or exchange kinetic energy appears to dominate chemical bonding. 
This has been tested by examining the results for several stable and unstable 
molecular systems. 

Appendix A: Basis Sets 

We will now describe the basis sets used in the calculations reported herein. 
Most of the calculations of H 2 used a minimum basis set. The reason is that 

this basis yields partitions of the energy quite comparable to those of larger basis 
sets, as is shown in Table 2, and in addition calculations can be simply and ef- 
ficiently carried out for a number of internuclear distances. It is apparent from 
Table 2 that our conclusions are not greatly altered by the use of a larger basis set. 
Note in particular, how insensitive the total contragradience is with respect to the 
basis set. 

lo As indicated in the H~ discussion, this type of analysis applies also to cases in which the usual 
group operator, G/(used to ensure spin and Pauli symmetry), is supplemented by spatial symmetry 
operators to ensure the proper spatial symmetry. 
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Table 2. Basis set dependence of the energy partitions for self-consistent G1 wavefunctions of H 2 (all 
calculations for R = 1.4 %) 

Number  of E ~ Txa vnxa fj)a - -  D C  b 

basis functions 

2 ~ - 1.147777 -0 .164937 0.031475 -0.982840 -0.142663 
4 d - 1.151345 -0.152065 0.022477 -0 .999280 -0.146613 
6 ~ -1 .151526 -0 .159958 0.029630 -0.991568 -0.148577 
8 f -1 .151887 -0 .157300 0.026950 -0.994587 -0 .148252 

a E is the total energy, T x is the exchange kinetic energy, V "x is the exchange nuclear attraction, and 
(o is E - T ~. 

b _ D C  is the contragradience energy, see Ref. [6]. 
c ~is = 1.2005. 
a ~'ls = 1.1909, (2p ~ 2.0928. 

~'1, = 1.3129, (z~ ~ 1.1566, (zp = 1.9549. 
f (1, = 1.3092, ~'z~ --- 1.1273, ~'2t, = 1.700, (3d = 2.35. 

In polyatomic systems involving H2, we have used the optimum 11 minimum 
basis set and distance calculated for H 2, R e = 1.4304242 and ~ls = 1.1937847 (not 
all of these figures are significant). 

The He atom basis set for the Hel l  and Hel l :  calculations consists of four 
Slater functions [16] with (is, (2~= 3.30 and (1~', (2~' = 1,433, whereas the He~ 
calculations I2 used an added optimized 2pa orbital (orbital exponent 0.4). The 
intermolecular distances used here were chosen to be approximately comparable, 
based on he van der Waals radii of the molecules involved. From the resulting 
AE' it appears that the He2 distance is somewhat too large in comparison to the 
(He) 2 distance. 

The Li atom basis set for LiH consists of seven Slater functions [16] with one 
l s ( (=  3.0), four 3s's((= 5.4, 2.999, 1.347, 0.841), and two 4s's((= 5.33, 7.32), all 
optimized for a Li atom. 

The basis set for BH consists of an (1 ls, 5p/4s) primitive set of Gaussian-type 
orbitals contracted to a (5s, 3p/2s) set [17]. 
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